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The Binocular Summation Factor and its relevance for Deepsky Observing 
Part 1, Scientific Background 
 
Arie Otte 
 
Abstract 
Large-mirrored binoscopes are rare and amateur astronomers wonder about their benefits for deepsky 
observing. This often ends with one question only: how large are the two mirrors of a binoscope in 
comparison with a single, larger mirror? The theoretical answer to that question is partly dependent 
on the quantitative value of the so-called binocular summation factor. In part 1 of this article I’ll 
address historic and scientific aspects of this factor as well as controversies about its value and 
interpretations. From the scientific literature regularly a value of 1.4 up to 1.7 emerges. Both the 
significance of the factor and its quantitative value are often misinterpreted by amateur astronomers. 
Sometimes a 1.41 high factor is interpreted as if one should multiply the aperture of a single mirror (or 
lens) with a factor 1.41 to predict the equivalent aperture of a two-mirrored binoscope (or binocular). 
However, another view maintains that one must multiply the aperture of one mirror with the substantial 
lower factor of √1.41 or 1.19 to obtain the two-mirror equivalent. This difference in interpretations is 
largely due to a complete lack of solid data. I have therefore directly compared a 2 x 13 inch 
binoscope with a 16 inch mono-mirrored telescope to address this question. In part 2 of the article I’ll 
describe the results, as well as comparisons made by other observers. There, I will also discuss the 
relevance of the binocular summation factor in the context of other aspects of binocular vision. 
 
Introduction 
How can one compare a large-mirrored binoscope with a ‘mono-telescope’ that has an even larger 
mirror?  Binoscope owners may stress the increased signal to noise ratio you achieve by looking 
through a binoscope, resulting in an enhanced contrast of the images. This, however, appears not to 
provide a satisfactory answer. Instead, people, who have never looked through a binoscope, just want 
to know how one can calculate the equivalent aperture of the two binoscope mirrors. So, for 
example, if you have two 13 inch mirrors, adding up the surface areas equals a single, ~18 inch mirror. 
But what if you see only as much with this 2 x 13 inch binoscope as with a single 15 inch mirror? Why 
then bother and not simply buy for instance an 18 inch mirror with which you can see more than with 2 
x 13 inch mirrors? This is a fair concern, since a lot of money or building effort is involved.  
 
A seemingly logical assumption would be that ‘one plus one equals two’, meaning that you can see 
twice as much with two eyes than with one eye. A little reflection shows, however, that this cannot be 
true. When you close one eye during day light, it is obvious that you still see more than just  50% of 
before closing the one eye. Probably you see with one eye even as much as with two eyes, except for 
the lack of depth, which is caused by parallax. It is only when light is dim and objects are visible at  
threshold levels that one start to note a difference between viewing with one or two eyes. This 
phenomenon has been the subject of a long history of vision research. This scientific research is in 
particular medical oriented. Naturally the question is of importance in cases of (partial) blindness to 
one eye, caused by accident or disease. Beside these practical, medical aspects, there is also a long 
standing interest into the theoretical aspects of ‘binocular’ vision versus ‘monocular’ vision. Part of this 
research revolves about the question of how one could quantify the differences of viewing with one or 
two eyes. In a lot of quantitative models the binocular summation factor and its quantitative value 
plays an important role.  
 
Binocular summation factor 
Binocular summation is the process by which the brain combines the information that they get through 
incoming signals in the left and right eye. By means of binocular summation the threshold value for the 
detection of faint objects is lower with two eyes than with one eye. Statistically there is an advantage 
for the detection of a weak signal when two detectors are used instead of one detector. This 
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advantage is √2, or 1.4, called the binocular summation factor. On Bruce Sayre’s website an 
excellent lecture given by dr. Thomas Salmon is quoted. In this lecture the theory is summarized. 
 
Early experiments tried to pinpoint the advantage of binocular vision quantitatively (Pirenne, 1943). It 
was shown that with binocular detection a faint light signal is 1.4 times better observed than with 
monocular detection. The theory that was based on these early experiments is called the probability 
summation theory. To give an idea how such experiments were performed and interpreted, I’ll 
summarize some of the findings. Pirenne used flashes of light with different brightness, for the duration 
of a few milliseconds. The observed frequency of seeing the flash of light were noted for the left eye 
only, for the right eye only and for both eyes. Here is one telling example (Pirenne, 1943): 
 
Observed frequency of seeing 
Left eye 25/125 = 0.198    
Right eye 71/275 = 0.258   
Both eyes 62/164 = 0.378 (this is  a factor 1.66 better than the average of left/ right frequencies) 
 
Now assuming that the probabilities of seeing signal with the left eye (Pl ) or the right eye (Pr), are 
independent, one can predict the probability of seeing with both eyes (Pb). The definition of probability 
of detection this signal with both eyes is: Pb = Pr + Pl – (Pr x Pl). If the above observation for the left 
and right eyes are calculated, Pb = 0.198 + 0.258 – (0.198 x 0.258) = 0.405. This is pretty close to the 
observed 0.378. When the above and other experimental data are plotted, the figure below emerges. 
The B line is calculated from the observation values for the left (L) and right (R) eyes. At log brightness 
1.0, the above explained example is plotted.  

There are a couple of things to note. The observed frequencies with both eyes closely fit the predicted 
probabilities that were calculated with the formula above. Hence it was concluded that the increased 
probability of seeing with both eyes (the open circles in Fig. 1) can be explained with a statistic 
summation only and that no other, physiological fusion mechanism in the brain has to be responsible. 
Or, in other words, the two eyes are just seen as independent detectors. Here the term probability 
summation theory stems from. 

A second point I want to stress is that the curves for the left and right eye differ significantly. Although 
this can be expected for two different eyes with different sensitivities etc., this point will come back 
later.  

 

Figure 1. Pirenne’s experimental data that fit the predicted values for the increased probability of seeing a light 
flash with two eyes (B), as compared with the observed frequency of seeing with the left (L) or right (R) eye only. 
The circles through which the B line runs, are the calculated Pb values. 
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Finally, the increased probability of seeing with both eyes depends highly on the brightness of the   
stimulus. In Salmon’s notes, he arbitrarily used a probability of 0.6 of seeing with each eye. That 
means that the total probability for two eyes is 0.6 + 0.6 – (0.6 x 0.6) = 0.84. That is 1.4 times more 
than 0.6, so here we have the much quoted √2 or 1.4 large binocular summation factor. However, 
the probability of detection could be anything, depending on what the person is looking at.  If it is very 
difficult to see an object, the probability of detection would be very low, for example 0.1.  If the object is 
easily visible, the probability would be nearly 1.0. In the introduction I referred in this context to 
binocular vision during daylight. If you look during daylight at a bright object, it won’t matter much 
whether you look at it with one or two eyes. So the probability will be 1.0. That means that a total 
probability for seeing with both eyes is 1.0 too (namely 1.0 + 1.0 – (1.0 x 1.0) = 1.0). So it is only at 
increasingly dimmer lights that the probability for seeing with both eyes will become higher. For 
instance, when the probability for each eye is 0.3, the probability for seeing with both eyes is 0.3 + 0.3 
– (0.3 x 0.3) = 0.51. This is a factor 1.7 larger than the probability of seeing with one eye only. These 
trends are also visible in figure 1. 

Generally, when vision scientist conduct experiments to determine the threshold for detection, they 
often use a value of 0.5.  Why? Since there is not a clear intensity level that you can call a "threshold," 
they arbitrarily define the threshold as the intensity at which you get a 50% probability of detection or 
0.5. The probability that two eyes detect the signal is now 0.5 + 0.5 – (0.5 x 0.5) = 0.75. And now we 
have a 1.5 factor increase as compared to the 0.5 probability of seeing with one eye only.  

Also the much quoted 1.4 binocular summation factor is in fact largely dependent on how dim the 
observed objects are and is often used out of convenience. This is because this value coincides 
exactly with the increase in aperture diameter of two combined mirror surfaces. Take for instance my 
two mirrors with a diameter of 13 inch each. The surface of each mirror is or π(1/2d)2, or ~132.6 inch2. 
The combined surface of the two mirrors is thus ~265.3 inch2. And this is equivalent to one mirror with 
a diameter of ~18.4 inch. And that is exactly a factor √2 or 1.41 larger than my 13 inch mirror diameter.  

 
Binocular summation, binocular facilitation and other aspects of binocular vision 
It is known that many visual cortical neurones are binocularly connected in higher primates. Since 
there exist functional and physical interactions between visual neurones from the two eyes it is hard to 
believe that statistics and probability are the only explanation for binocular summation. So while the 
probability summation theory is still perceived in the scientific literature as a valid approach, there are 
additional factors that influence the value of the binocular summation factor. For instance, there are 
conditions, in which the increase in binocular sensitivity is greater than could be explained by 
probability summation alone. Optimal summation occurs when 1) corresponding points on the two 
retinas are stimulated with like targets or stimuli, and 2) when the stimuli are presented to the two eye 
simultaneously, or at least within ~100 msec of each other. In these cases the activity of the brain is 
enhanced more than the sum of both brain activities that are provoked by each one eye separately. If 
there is any advantage above the mentioned binocular summation factor of 1.4, this is attributed to 
this mechanism, which is called binocular facilitation or neural summation. 
 

Furthermore, Campbell and Green (1965) provided another explanation of why binocular summation 
should lower the visual threshold by a factor of 1.4. They argue that by combining the input from two 
eyes, neural signals would be added while background neural noise (assumed to be random and 
uncorrelated) should partially cancel. They predicted and measured that this process alone would 
cause binocular thresholds to be lower by a factor of √2 or 1.4 (Figure 2).  

Therefore, the often recurring 1.4-fold improvement in visual function could be explained by either 
probability summation, an increase in signal-to-noise ratio or neural summation. Any 
improvement by more than this 1.4 fold would indicate that neural summation or some other form of 
physiological summation is involved. 
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Figure 2. Campbell and Green (1965) contrast sensitivity tests. The open circles at the top represent the 
binocular/ (mean) monocular sensitivities. The straight horizontal line is the average of these ratios at different 
spatial frequencies, which is √2! (In fact 1.418 ±  0.021 for three experiments with two different people). 

Since these landmark studies, a lot of scientific research has been conducted concerning binocular 
versus monocular vision. At least five different models have been proposed (Meese et al, 2006) to 
explain binocular summation. Sometimes experiments are conducted that show that binocular 
summation exceeds the factor √2 (Meese et al, 2006). In fact, factors of 1.7 and up to 2 been reported 
(see Frisen and Lindblom, 1988). But as far as I can tell, no simple interpretation has come forward as 
yet. There are a number of reasons for that. 

1. Methodologies range widely, signifying that it is not an easy task to design experiments that 
unequivocally address and resolve the issue properly. One experiment may have let subject dark 
adapt for 30 minutes, but another may have dark adapted for only 10 minutes. In one experiment, 
the dim light may have been presented for just 1 second, but in another, for 5 seconds.  All these 
variables can affect results and the protocols used are far from standardized. In my case of 
estimating limiting magnitudes (see below) it is of importance that my eyes have to be well dark-
adapted in order to detect the weakest star possible. This usually takes at least 15 to 30 minutes. 

2. Aspects of vision such as the detection of threshold levels of light, contrast or resolution benefit to 
a different extent by binocular vision. A point source would be perceived only by a small area of 
the retina, but a larger source would include areas of the retina that might respond differently.  For 
example, the physiology of the central 1° of vision is very different from that a few degrees 
peripherally. This makes ‘fixing’ one single binocular summation factor for all these aspects also a 
difficult affair.  

3. Our two eyes are rarely identical, this can already be seen in the 1943 Pirenne data. The 1.41 
factor may only be valid when both eyes are equally sensitive and optimal. But it will in the 
extreme decrease to 1 when one eye has no sensitivity at all (Nelson-Quigg et al., 2000).  

4. In a number of studies large differences are reported between individuals. The spread is so large 
that one study concludes that there may be not a single binocular summation constant at all 
(Frisen and Lindblom, 1988). They also concluded that the degree of binocular summation is 
related to the complexity of the visual task. For instance, they found that the binocular summation 
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factor was significantly smaller in resolution tests than in detection tests. Similarly, when an even 
more complex parameter such as contrast is taken as read-out, the resulting binocular summation 
factor is higher than the often quoted 1.4 (Meese et al, 2006).  

5. It is telling that some scientific papers use more accurately phrases such as “the √2 ratio of 
binocular to monocular contrast sensitivity” (Anderson and Movskon, 1989). Or “the binocular 
summation (the ratio of binocular to monocular contrast sensitivities at threshold) is ~1.7” (Meese 
et al., 2006).  

 
Interpretations of the binocular summation factor by amateur astronomers 
How has the √2 or higher value for the binocular summation factor been perceived by the amateur 
astronomy community? In most instances the reasoning is simple: just add the two areas of the 
mirrors. But others say no, this is not the way things work. For instance Ed Zarenski on Cloudy Nights 
(Zarenski, 2006) states this: “these factors are applied on the aperture delivering light to each eye, not 
the total area of the two apertures delivering light to both eyes. What I mean is this; you would not add 
the area of two 70 mm lenses to get 4900 + 4900 = 9800, then take the √9800 to find total light 
delivered from a total 99 mm aperture. The light is delivered from a 70 mm aperture to each eye. The 
binocular summation factors are applied to that 70 mm aperture”.  
 

He thus implies that two 70 mm lenses are not equivalent to √(A2 x 2) = √(2 x 702) = √(2 x 4900) = 99 

mm. Instead the area of 4900 times is multiplied with the summation factor 1.41, which predicts the 
‘novel’ combined area for two eyes. This results in an aperture of √(4900 x1.41) = 83.2 mm, which is 

√2 times the aperture of 70 mm. In formula this becomes √(A2 x1.41). So instead of multiplying the 
diameter of the mirror by √2, the diameter is multiplied with a factor of √1.41 or 1.19. This would imply 
that my 2 x 13 inch mirrors are equivalent to a ~15.5 inch  mono telescope instead of ~18.3 inch.  
 

This interpretation is restricted to an amateur astronomy audience that visit internet forums such as 
Cloudy Nights. However, it has been taken to a wider audience by Phil Harrington in his book Cosmic 

Challenges (Harrington, 2011). He takes over Zarenski’s interpretation and uses the formula √(A2 
x1.41). He uses this formula to calculate the equivalent telescope aperture of a number of binoculars 
and simply multiplies the aperture of one lens with 1.19.  

 
Without choosing between which one of these views is correct, there are a couple of things to note: 
1) As argued, there no such thing as a singular binocular summation factor. Its quantitative value 

depends for instance largely on which parameters are used as read out, such as resolution, 
detection etc. The 1.41 factor is the result of often convenient assumptions. Up to values of 2 have 
been reported. And a factor 2 would imply a 1.41 times larger mono-mirror aperture.  

2) Probably of more importance is the question whether one can translate the binocular summation 
factor in a rather linear fashion to predict a comparable mono-mirror aperture. Vision scientists will 
never embark on such an endeavour and with good reason. Grossly simplified, they are 
concerned with is ‘how much more or better you see with two eyes than with one eye’. From their 
perspective it makes no sense to translate that question into ‘how big should one eye be to 
replace or be equivalent to two eyes’. After all, we do have only two eyes and not one larger 
‘cyclops’ eye to compare with, so why bother with this question. In short, taking any value of the 
binocular summation factor and use it to predict how big a comparable mono-mirror would be, is 
an INTERPRETATION of the factor’s meaning. It stems from an understandable obsession of 
amateur astronomers who want to know whether it is literally worth it to go through the trouble of 
buying/ making a binoscope. 

 
Given these considerations I started to doubt the rather one-dimensional approach of ‘there is a 
summation factor of 1.41 and that translates to a 1.19 increase in aperture’. In particular since I had 
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the impression that I saw more with my 2 x 13 inch binoscope than I could expect from a 1,19 times 
large, 15.5 inch mono-mirror. Hence I started to think of how I could approach this comparing a 
binoscope directly with a larger telescope harbouring a larger, single mirror. 
 
 
Conclusions 
Scientific research into the relevance and the value of the binocular summation factor has a long 
history. It is clear from the extensive literature that it is very hard to assign an exact and single value to 
this factor. This may not be surprising given that binocular vision involves many different aspects. Not 
only the physical components of the eyes, but also complex neural processes play key roles in 
binocular vision. Therefore, one single binocular summation factor is probably not sufficient to cover all 
aspects of binocular vision. Furthermore, there is an amazing range in how different individuals 
perceive aspects of binocular vision. Therefore utmost care must be taken with generalizing 
conclusions. In particular sweeping statements and simple formulae to compare binoculars (or two 
binoscope mirrors for that matter!) to one larger mirror are almost certainly misleading at best. This, 
however, appears to be the unsatisfactory status in amateur astronomy. One way out of this could be 
to directly compare a large binoscope with a large mono-telescope. At least for point light sources, i.e. 
stars, one can determine the limiting magnitudes and from that calculate the binocular summation 
factor for that specific situation. In part 2 of the article I’ll present such direct measurements. In part 2 
I’ll  also address the relevance of the binocular summation factor for deepsky observing, in comparison 
to other factors that favour binocular viewing. 
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The Binocular Summation Factor and its relevance for Deepsky Observing 
Part 2, Measurements and Observations  

 
Abstract 
Large-mirrored binoscopes are rare and amateur astronomers wonder about their benefits for deepsky 
observing. This often ends with one question: how large are the two mirrors of a binoscope in 
comparison with a single and larger mirror? The theoretical answer to that question is partly 
dependent on the quantitative value of the so-called binocular summation factor. In part 1 of this 
article I addressed historic and scientific aspects of this factor as well as controversies about its 
quantitative value and significance. The controversy is largely due to a complete lack of solid data. I 
have therefore directly compared a 2 x 13 inch binoscope with a 16 inch mono-mirrored telescope in 
order to determine their respective limiting magnitudes. Here, in part 2 of the article I describe the 
results. A popular view amongst amateur astronomers predicts that 2 x 13 inch mirrors should be 
equivalent to a single 15.5 inch mirror. However, I found that limiting magnitudes of the 2 x 13 inch 
binoscope are consistently higher than of a single 16 inch mirrored telescope. Also, on extended 
objects, such as galaxies, the differences are even larger, in favour of the binoscope. I discuss what 
these findings imply for the binocular summation factor. I also discuss the binocular summation factor 
in the context of other aspects of binocular vision and argue that the factor itself is of only limited 
relevance for deepsky observing. 
 
Introduction 
How can one compare a large-mirrored binoscope with a ‘mono-telescope’ that has a larger mirror? As 
explained in Part 1 of the article, the binocular summation factor and its quantitative value may play 
an important role in how to compare the two mirrors to one larger mirror. The scientific literature is very 
careful in assigning a single value to the binocular summation factor and its interpretation. In the 
amateur astronomy community a prevailing view is put forward by Zarenski (2006) on Cloudy Nights 
and Phil Harrington in his book Cosmic Challenges (Harrington, 2011). They assign a simple formula 

to the comparison between two mirrors compared to one larger one. This formula is √(A2 x1.41). Here, 
A stands for the aperture of one binocular lens (or binoscope mirror). This, in short, says that one must 
multiply the diameter of one lens/ mirror with a factor 1.19 to obtain the diameter of a comparable 
single lens/mirror. However, observers who have directly compared large binoscopes with comparable 
mirrors claim that their impression is that this factor is too low.  
 
One way to address this controversy is to directly compare a large binoscope with a large mono-
telescope. At least for point light sources, i.e. stars, one can determine the limiting magnitudes and 
from that calculate the binocular summation factor for that specific situation. Here I present such direct 
measurements. Finally, I also address the relevance of the binocular summation factor for deepsky 
observing, in comparison to other factors that favour binocular viewing. 

 
Measuring the limiting magnitudes of a binoscope and a comparable single mirror telescope 
So the question is: how does the size of two binoscope mirrors compare to one larger mirror. One way 
to test this is to determine limiting magnitudes of stars under equal observation conditions and 
compare these for both a binoscope and a comparably larger single mirror telescope. To determine 
the limiting magnitude one simply determines the faintest star one can still see with either the 
binoscope or the comparable one, larger mirror. The resulting differences in limiting magnitude are 
thereby an indirect measure for the value of the binocular summation factor. In a mail exchange with 
Mel Bartels, he proposed that he would directly compare a binoscope and an equivalent mono-
mirrored Dobsonian telescope to determine the limiting magnitudes of either instrument. I followed up 
his suggestion and compared the 2 x 13 inch binoscope with a 16 inch mono-Dobsonian telescope for 
limiting magnitudes (see Figure 1). The mirrors of the 2 x 13 inch binoscope are f/5.0, giving a focal 
length of 1650 mm. The 16 inch mirror is f/4.5, but I use a Paracorr coma corrector, which transforms 
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the mirror into a f/5.2, and an effective focal length of 2080 mm. When using the same eyepieces, the 
respective focal ratios of f/5 and f/5.2 provide exit pupils that resemble each other closely. So, for 
example, when using 10 mm Ethos eyepieces, the exit pupil with the binoscope is 10/ 5 = 2, while the 
exit pupil with the 16 inch 10/ 5.2 = 1. 92. These exit pupils are almost the same. This is important, 
since when viewing point light sources such as stars, the exit pupil determines the degree of 
background ‘blackness’. By coincidence the background darkness in each telescope is thus more or 
less the same, allowing a proper comparison. Only the magnification in each telescope will differ 
because of the different focal length.  
 
I determined the limiting magnitude for each telescope during two nights. The first night had almost 
perfect conditions, with an SQM of approaching 22.0 (a naked limiting magnitude of 7.0) and a very 
high level of transparency. I chose a star field close to Polaris. The second night conditions were 
somewhat less, with a SQM of 21.5 (a naked eye limiting magnitude of 6.6). Transparency was good. I 
chose two star field, surrounding NGC 7448 and NGC 7678 in Pegasus.  
 

 
 
 
Figure 1. At the left my 16 inch f/4.5 mono-Dobsonian telescope and at the right the 2 x 13 inch f/5.0 binoscope. 
For more pictures of these instruments see my website (http://arieotte-binoscopes.nl/Binoscopes.htm) 

 
The results are shown in Table 1. The limiting magnitudes were determined in the respective star 
fields with the 2 x 13 inch binoscope (column 2 x 13) and the 16 inch mono-mirrored Dobsonian 
telescope (column 16). As can be expected, the limiting magnitudes from the second session are 
somewhat lower than during the first session, due to the lower sky blackness. Also, with a smaller exit 
pupil (higher blackness of the background sky) the differences appear to become somewhat larger. 
The main conclusion is though that, when taken as a whole, the limiting magnitudes of the binoscope 
are consistently higher than that of the single mirrored 16 inch telescope. This is not compatible with 
the prevailing view that the 2 x 13 inch binoscope should behave as one 13 x 1,19 = 15.5 inch 
telescope. 
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1. Calculated for the f/5.0 binoscope. With a Paracorr the 16 inch f/4.5 telescope has a f/5.2 ratio, the 

exit pupils are corrected for that. 
2. The first magnification is for the 2 x 13 inch, the second for the 16 inch f/4.5, with Paracorr 
3. To calculate the limiting magnitude for a single 13 inch mirror, in comparison to the 16 inch mirror, 

the following formula is used: M-5*log(aperture 400/aperture330). For instance for 10  mm Ethos 
at 1-5-2013: 15.9 - 5*log (400/330) = 15.9 - 5*0.0834 = 15.9 - 0.417 = 15.48 (15.5 is written down!) 

4. To calculate the increase of the two 13 inch mirrors as compared to the one 13 inch mirror, the 
following formula is used: 10^(1/5*(M_bino-M_mono)). For instance for 10 mm Ethos at 1-5-2013: 
10^1/5*(16.4 - 15.48) = 10^0.184 = 1.53.  

 
Table 1. Results that show the limiting magnitudes when using either the 2 x 13 inch binoscope or the 16 inch 
mono-mirrored Dobsonian telescope. See the text for explanations. 

 
 
Observations by others 
During the same period Mel Bartels and some experienced observers compared a 2 x 8 inch 
binoscope with either a 12 or 13 inch mono-mirrored Dobsonian telescope. The difference in 
equivalent apertures between the 2 x 8 inch and the 12 or 13 inch mono-mirror is a factor 1.5 and 
1.62 respectively. They concluded that in terms of limiting magnitudes the binoscope was ´just a tad 
less´ than the larger mono-mirrored telescopes (Mel Bartels, personal communication). Combining 
their data with mine, it appears safe to state that an increase in 1.4 to 1.5 in aperture does more to 
justify the observations than a 1.19 increase, which would result in a predicted 9.5 inch aperture 
mirror.  
 
While the above is concerned with point light sources only, a different picture emerges with extended 
objects, such as nebulae and galaxies. The problem is that differences on extended objects are much 
harder to quantify accurately. However, Mel Bartels continues to say that ”but the nebulosity was equal 
or better in raw detail and *every single observer* there agreed that aesthetically the 8” binos were 
better on extended objects” (Mel Bartels, personal communication). When a quantitative value is 
attached to the increase in equivalent aperture when extended objects are concerned, a factor of 1.7 
was more often cited.  
 
During the 2014 Oregon Star Party Telescope Walkabout, Jerry Oltion demonstrated his 2 x 12.5 inch 
during three nights (http://www.bbastrodesigns.com/osp14/osp14.html#Jerry_Oltion). “The binocular 
effect proved striking, gaining a magnitude, obvious on all objects and stars, none more so than the 
galaxy cluster Hickson 84 where the bino view showed galaxies fainter than 17th magnitude whereas 
a single mirror struggled to reach 16th magnitude”. (that is an increase  10^1/5*(17 - 16) = 10^0.2 = 
1.58 (my calculation)). Observers judged that “the scope performed equal to that of a 18 inch to 24 
inch scope, depending on object”. That’s a factor 1.44 to 1.9 difference in aperture! This is in line with 
what I describe in this article. Furthermore, “the Dumbbell Nebula was quite striking - one of the best 
objects in the scope”. Or, “one object that stood out better in Jerry's binoscope than any other scope 
regardless of size was M31, the Andromeda Galaxy. The dark dust lanes were very striking”. 
 

Observed limiting magnitudes
Aperture (inch)

Date SQM Eyepieces Exit pupil1 Magnification2 16 2 x 13 1 x 133 Δ  factor with 13 inch4

1-5-2013 22.0 27 mm Panoptic 5.4 61 - 77 15.5 15.8 15,1 1,39
10 mm Ethos 2.0 165 - 207 15.9 16.4 15,5 1,53

1-8-2013 21.5 27 mm Panoptics 5.4 61 - 77 14.4 14.9 14.0 1.51
10 mm Ethos 2.0 165 - 207 15.5 16.0 15.1 1.51
6 mm Ethos 1.2 275 - 345 15.8 16.4 15.4 1.58
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Also Peter Vercauteren states that: After having used my 18" bino-Dobson for over a year now and 
having compared it extensively with other instruments, including a 27" mono-Dob, I can confirm that a 
18" bino is at least equal, if not superior to a 25" mono. On faint objects I was even able to discern 
more detail than in the 27" (https://www.cloudynights.com/topic/588506-binoquadroculars/page-2). 
 
I myself can confirm that extended objects benefit the most from binocular viewing. For instance, with 
a 20 inch telescope I probably saw M51 as slightly brighter. But with the 2 x 13 inch binoscope I see 
much more details and contrast within the arms and halo of M51 than with the 20 inch. This 
observation does not stand on its own. Similarly, I saw the very faint arms of M81 much more 
pronounced and extended with the binoscope than with the 20 inch. And even more dramatic are 
views of M31, the Andromeda nebula. The extremely large and faint halo is readily visible in both the 2 
x 13 inch binoscope and in the 20 inch. But, with the binoscope a sharp transition between the edge of 
the halo and the space beyond is visible. In other words, with the binoscope one sees better where the 
M31 halo ends. This is easily observed when one scans at low speed through the halo. All these 
observations are the result of the highly increased contrast that can be gained with a binoscope. 
Below in Figure 2 I give an impression of how I observed the M27 Dumbbell nebula through either a 
20 inch f/4.0 mono-telescope and the 2 x 13 inch binoscope. What stands out is not so much an 
overall brightness, but the highly increased contrast in details such as filaments and the ‘calmness’ of 
the views (see below).  

 

 

 

 

 

 

 

 

Figure 2. At the left a drawing of the M27 Dumbbell nebula with a 20 inch f/4 mono-Dobsonian telescope and at 
the right a drawing  the Dumbbell nebula seen through the 2 x 13 inch f/5.0 binoscope.  

 

Although mostly qualitative in nature, all these observations point into the same direction. On 
extended objects, two mirrors in a binoscope are at least comparable with a 1.4 to 1.5 larger aperture 
of a mono-mirror. This is significantly better than the predicted 1.19 increase in aperture.  

What do these observations imply for the binocular summation factor and its use? 
So where does that leave us in terms of the binocular summation factor and its significance? In the 
prevailing interpretation, the aperture of one mirror should be magnified by a factor 1.19. This stems 

from the formula √(A2 x1.41) = A x 1.19 in which 1.41 would be the binocular summation factor. Above 
cited observations, however, claim increases in aperture of factors ranging between 1.4 and 1.7. With 
this specific use of this formula it would imply a binocular summation factor of between 2 and 2.9. As 
explained in the first article, the 1.41 value for the summation factor is rather arbitrary and values 
between 1.1 and 2 have been reported. Nonetheless, a value of 2.9 seems to be excessive and 
unlikely.  
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It seems more likely that the rather simplistic use of taking a binocular summation factor and use it to 
predict a larger, comparable mono mirror is not valid. As pointed out in the first article, all vision 
research concerning the binocular summation factor involves the comparison between a left and right 
eye and the combination of these two eyes. The left and right eye may be more or less comparable or 
one of them may be impaired, but never are the two eyes being compared to a single BIGGER eye. 
This is impossible and so no scientific research exists that approaches the question from this angle. 
Still, this is what amateur astronomers try to achieve. So unless all observations that are reported 

above are invalid, the √(A2 x1.41) formula cannot be correct. It also leaves the question of the 
quantitative value of the binocular summation factor in this specific context wide open.  

The binocular summation factor in comparison to other factors that favour binocular viewing 
Assuming that the binocular summation factor would range up to a rather high value of 2, what is its 
real impact for deepsky observing? This value would in the often cited formula result to an 
approximately equivalent to a doubling of the mirror aperture. So, the 2 x 13 inch binoscope would be 
equivalent to a 18.2 inch mono-mirror. As shown in Figure 4, this doubling in light-gathering area of a 
mirror results on average in an increased limiting magnitude of ~0.7 (Bartels, 2012). To put this 
number into perspective: when I am in my hometown I achieve a deplorable limiting magnitude of 4.7, 
if I’m lucky. In rural France a limiting magnitude of 6.7 is easily within reach. This gain in 2 full 
magnitudes dwarfs the at most 0.7 increase in limiting magnitude that can be achieved by changing 
from an equivalent mirrored mono telescope to a binoscope. Or, if the binocular summation factor in 
terms of light gathering capacity is the only argument to go for a binoscope, my advice would be: 
‘don’t bother’.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Limiting magnitudes that correspond with different aperture mirrors. In yellow the apertures in inches 
diameter are given, indicated by the upper row of numbers. In bleu are double apertures (double surface areas), 
calculated in aperture diameters, indicated by the lower row of numbers. Note that the difference between the 
yellow and blue bars I consistently ~0.7 magnitudes. Also an increase from 12 inch to 16 inch (approximately a 
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doubling in aperture) results in an 0.7 increase in limiting magnitude. The numbers are derived from Mel Bartels 
(Bartels, 2012). 

What then would be the principal factors that determine the benefits of a binoscope over a large-
mirrored mono-telescope?  
 
1. The most important factor is the better signal to noise ratio that for instance leads to the 

perception of a darker sky background. This is the single most important factor that favours a 
binoscope in comparison to a large mirror single telescope. This result translates as a difference in 
the contrast gain of a binoscope versus a large single mirror telescope. What does this mean? A 
stimulus that is not originating from an astronomical object (for instance 'light noise' from light 
pollution) could be interpreted by one eye as a bona fide signal. But the chance that such random 
noise signals hit two eyes simultaneously and reach the brains is very small indeed. In other 
words, when looking with two eyes, the brains do have to suppress much less background noise 
created by light pollution. And this automatically translates itself into a darker sky background, 
even in my light-polluted hometown. The resulting improved contrast is in particular relevant for 
the observation of very faint galaxy halo's or arms. Within these faint, extended objects many 
more details become visible and the contrast within the objects is greatly enhanced. Neural 
summation is probably responsible for this phenomenon.  
 
Related to this reduction of the ‘signal to noise ratio’, binoscopes also provide much ‘calmer’ 
views. When looking with one eye, the image is distorted by phenomena such as floaters, which 
results in a restless, scintillating view. True, after a long time at the one eyepiece this view also 
becomes calmer. This can easily be experienced when you change to the other eye after, for 
instance, an hour. One will then again have a restless view in the ‘fresh’ eye. Now, when looking 
through a binoscope this effect is striking. When closing either the left or right eye one is 
confronted with these (even different) scintillating images. When opening both eyes this 
instantaneously disappears and a smooth, silk-like image emerges. Mel Bartels considers this 
the greatest ‘wow’ factor (https://www.bbastrodesigns.com/30/30%20inch%20binoscope.html) of a 
binoscope and I agree. The effect is overwhelming when looking at faint halo’s of galaxies etc. 
Each time I note it I’m pleased to be looking through a binoscope. 

 
2. Stereopsis is the ability see depth. Because of the different positions of the eyes, an object is 

viewed by each eye from a slightly different angle (parallax). This creates a spatial 3D effect. How 
closer the object is, the larger the angle and how greater the 3D effect. But unfortunately, 
astronomical objects are so distant that there is no such thing as parallax there and consequently 
no 'real' stereopsis. But, there is a related phenomenon called chromatic stereopsis or 
chromostereopsis. This is caused by the slightly different breaking in the eye lens of for instance 
red versus blue light. As a consequence red and blue light focus in a slightly different place on the 
retina. This effect is different for each eye and it therefore appears as if red stars stand a bit closer 
than blue stars. When looking through a binoscope, chromostereopsis hereby creates an illusion 
of depth, although this is completely artificial. 
 

3. The principally wider field of view that can be achieved with a binoscope can hardly be achieved 
with a large mono-telescope, a point which is often stressed by Mel Bartels. Indeed, looking 
through a binoscope, this is a beautiful effect that is immediately obvious. But why is that? If you 
take the example of my 2 x 13 inch binoscope, with f/5.0 mirrors, the use of two 10 mm Televue 
Ethosses delivers a 165 x magnification and a 0.61 degree true field. Suppose this binoscope has 
an approximate equivalent of a 18 inch mono-telescope, also being f/5.0. Now the 10 mm Ethos 
would deliver a 225 x magnification and a 0.45 degree true field, which is only half of the true field 
you see with the binoscope. To achieve a 165 x magnification and a 0.61 degree true field, the 18" 
needs to be f/3.7. And since this creates massive coma, a coma-reducing Paracorr will be needed. 
As a consequence, the mirror needs to be even f/3.2 for these same magnification and true field 
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(with thanks to the Televue Eyepiece Calculator!). Now consider what will be the costs of such a 
steep mirror!  
 
There is another aspect here that is rarely addressed. In humans, the horizontal binocular visual 
field is 120 degrees. But there is an additional 45 degrees monocular field on each side of the 
binocular field. So, there is a total of a 90 degrees field that is non-binocular, but that is seen by 
looking with two eyes. By looking with one eye only, this is just a mere 45 degrees of the one eye. 
And even though you cannot encompass the entire 120 plus 90 degrees at one glance, you will 
observe it peripherally and it adds to the feeling of being present in the picture. Of course, the 
choice of eyepieces is important here: with two 50 degree apparent field of view eyepieces, you 
will just see the field stops. But the effects are very obvious when two Ethos eyepieces with a 100 
degree apparent field of view are used. 
 

4. The sheer comfort of observing with two eyes. There is also the 'ordinary' effect of the increased 
comfort by looking with two eyes instead of with one eye, and another squeezed eye. Sustained 
and concentrated viewing at faint details with two eyes, without the strain of looking with one eye 
only, is more pleasant and more relaxing. 
 

5. The gain in limiting magnitude, or a gain in aperture, which makes a binoscope comparable with a 
larger mono-telescope. This is the topic of this article. Unfortunately, as explained, this aspect gets 
most of the attention.  

 

Conclusions 
The use of a specific value of the binocular summation factor to predict how the aperture of two 
binoscope mirrors compare with a single, larger mirror is misleading at best. First of all, experimentally 
determined values of the binocular summation factor range considerably and this influences 
theoretical predictions. Secondly, scientific experiments that investigate vision phenomena such as the 
binocular summation factor are based on the use of a single left or right eye versus the use of two 
eyes. And they are not used to predict how big one single, larger ‘cyclops’eye would be as compared 
to our two eyes. This is, however, precisely what amateur astronomers attempt and it leads to rather 
odd results.  
 
Direct comparisons between large binoscopes and larger, single mirrored telescopes indicate that the 
increase in the aperture of the larger, comparable mirror ranges between a factor 1.4 and 1.7. This is 

at odds with the commonly used √(A2 x1.41) formula that predicts a 1.19x gain in aperture of the larger 
mirror. Either these observations are wrong or the use of this formula and its predictions. I tend to 
believe the last.  

I further argue that, whatever its quantitative value, the binocular summation factor has only limited 
relevance for deepsky observing. The increased signal to noise ratio that is achieved with a binoscope 
is probably more important for the beneficial effects of looking with two eyes through a binoscope. Still, 
the claim of a meagre 1.19 improvement of a binoscope (or binocular) in terms of light-gathering 
capacity probably puts of many potential users/ builders of binoscopes. This is regrettable, to say the 
least.  
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